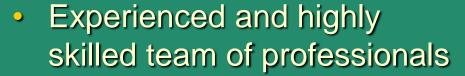


Presentation Disclaimer

This presentation contains includes certain forward-looking statements that have been based on current expectations about future acts, events and circumstances. These forward-looking statements are, however, subject to risks, uncertainties and assumptions that could cause those acts, events and circumstances to differ materially from the expectations described in such forward-looking statements.

These factors include, among other things, commercial and other risks associated with estimation of potential hydrocarbon resources, the meeting of objectives and other investment considerations, as well as other matters not yet known to the Company or not currently considered material by the Company.

MEO Australia accepts no responsibility to update any person regarding any error or omission or change in the information in this presentation or any other information made available to a person or any obligation to furnish the person with further information.

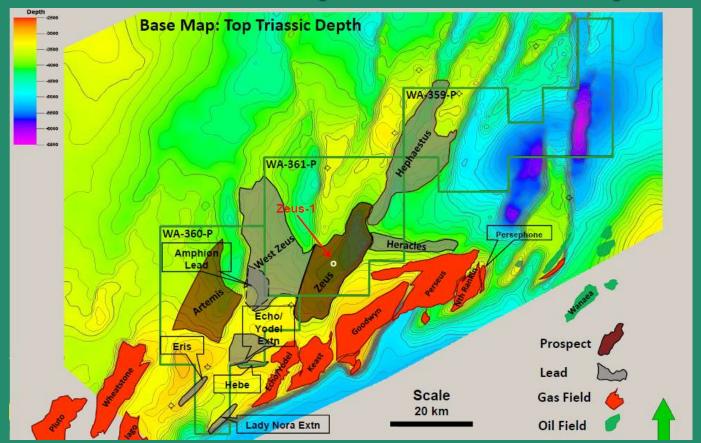

Coal-to-Liquids & Gas-to-Liquids Conference

February 2009 Brisbane

MEO Australia Limited - Focus

An exploration and development company

"Focussed on building value through the discovery and commercialisation of hydrocarbon resources"



- Skills, tools and experience of a petroleum industry major
- Creativity, drive and lateral thinking of a start-up company
- Currently focussed on two established GTL areas:
 - Carnarvon Basin (exploration)
 - Bonaparte Basin (exploration and development)

Carnarvon Basin – a premium LNG province

- Multiple commercialisation options
- Zeus-1 (Feb'09) dry. Substantial remaining multi-Tcf potential
- Seeking Farminee 2Q'09 with drilling planned in 2010

Methanol – an established global market

Global Methanol Usage* (* Source: Methanex)					
Derivative	%	End use examples			
Formaldehyde	42	Pharmaceuticals, wood adhesives, auto parts			
Acetic Acid	13	Adhesives (PVA), synthetic fleece fabrics, paints			
Di-methyl Terephthalate	3	Recyclable plastic bottles			
MTBE	15	Gasoline octane enhancer / extender			
Methyl Chloride		Silicones (sealants)			
Solvents	- 27	General use solvents, window cleaners			
Other		Various			

- 2008 global demand = 40 million tonnes
 - 40% in Asia Pacific and China
- Growth historically 1% above GDP
- End use drives demand

With significant growth potential

Emerging uses may result in growth above the historical trend: -2013+ demand

•	Relatively simple conversion (dehydration) to DME (DME is an LPG and diesel additive / extender) (source: Methanex)	~20 MT/a
•	Direct fuel blending / extending (diesel or gasoline) (source: IDA)	~11 MT/a
•	Conversion to olefins	>6MT/a
•	Bio-diesel manufacture requires 10% methanol (source: JJ&A)	>3MT/a
•	Conversion to gasoline (ExxonMobil process?)	??
•	Direct methanol fuel cells (Technology improvement could lead to replacement of internal combustion engine in hybrid car	??

Bonaparte Basin – CO₂ challenged gas

Commercial impediments

- Location:
 - Distant +/- Deep +/- Disputed territory
- Gas quality:
 - Dry (low liquids) +/- Dirty (high CO₂)
- JV issues:
 - Dysfunctional (commercial alignment?)
- Single project vs regional approach
 - (blending gas, shared infrastructure)

MEO Australia

Progressing?

Greater Sunrise (FLNG? Land?) (Woodside/Shell/ConocoPhillips)

~8TCF 3% CO₂ 30 bbl/mmscf

Abadi (FLNG?) (Inpex/Pertamina)

~10 TCF 8% CO₂ 20 bbl/mmscf

CO, challenged

Barossa/Caldita (ConocoPhillips/Santos)

~3.4 TCF 12% CO₂ 5 bbl/mmscf

Evans Shoal

(Santos, Shell, Petronas, Osaka Gas)

~6+TCF 25% CO₂ 4 bbl/mmscf

Blackwood (MEO – 100%)

Appraisal planned 2010

Heron

(MEO - 90%, Petrofac - 10%)

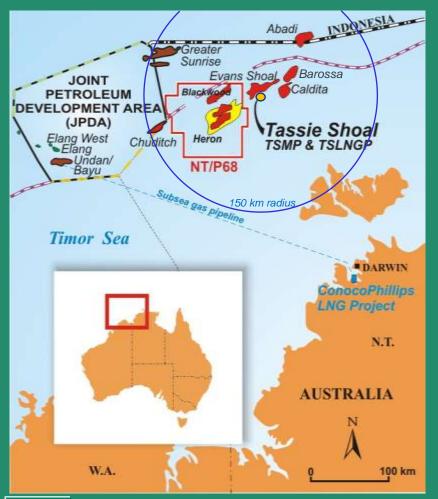
Appraisal planned 2010

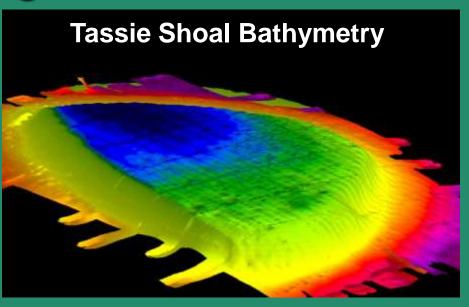
MEO Australia Limited

Methanol – a CO₂ sink!

Carbon Sequestration by the Steam Methane Reforming (SMR)

Methanol Process


• Gas Reforming:


$$3 \times [CH_4 + H_2O => CO + 3H_2]$$
 $+ [CO_2 + H_2 => CO + H_2O]$
ie $3CH_4 + CO_2 + 2H_2O => 4CO + 8H_2$
Methanol Synthesis:
$$4CO + 8H_2 => 4CH_3OH$$

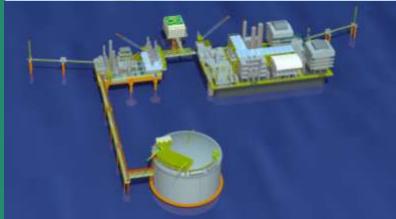
1 mol CO₂ with 3 mols CH₄ is ideal for synthesis to methanol

Tassie Shoal – a gift from nature...

~1,000 acres to 20m water depth in midst of stranded gas fields.

2 complementary GTL projects with Environmental Approvals until 2052

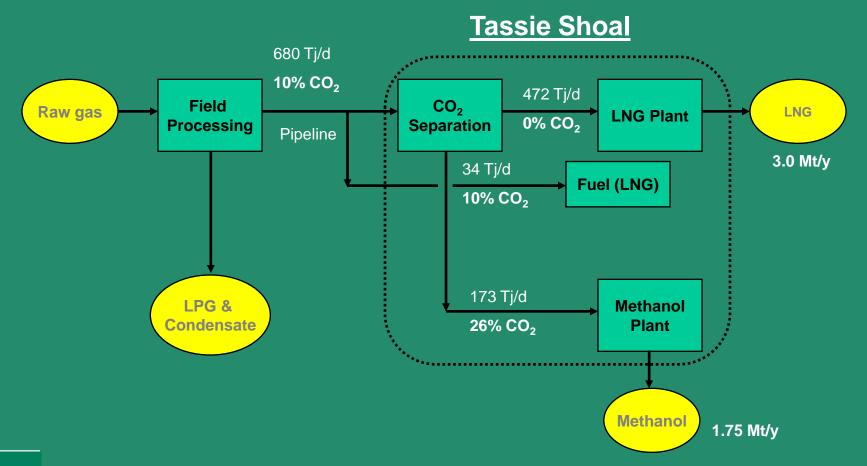
The potential to unlock billions of dollars in resource value ...


Tassie Shoal – Approved GTL Projects

<u>GTL Projects – with approvals</u>

- Tassie Shoal the future hub
 - CO₂ converted to methanol
 - Proximal to gas discoveries
 - Avoids expensive gas pipelines
 - Undisputed Australian waters
 - 3rd party gas welcome
 - Environmental approvals in place
- Cost effective development
 - Pre-fabricated in SE Asia
 - Pre-commissioned in casting basin
 - Towed to site ballasted by water
 - Simple de-commissioning

The economic 'game-changer'

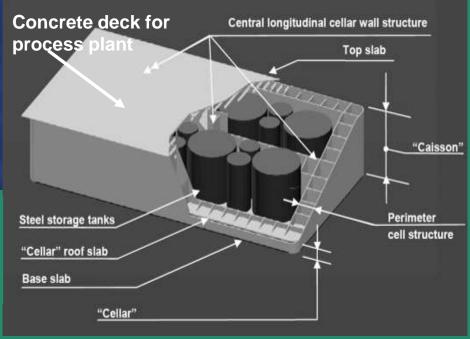


Tassie Shoal GTL Projects

An integrated solution for CO₂ challenged gas

- CO₂ sequestered in Methanol derivates
- Requires ~4.7 Tcf raw gas to operate for 20 years

Methanol substructure and storage



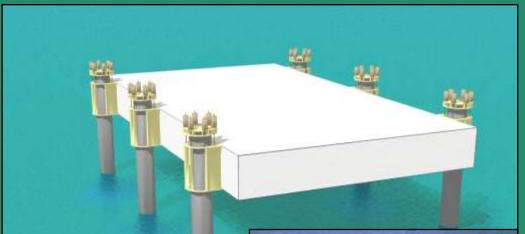
Capex: US\$1,100m (approx.)
Topsides 35,000 t
Total height 95m
20 days final product storage

<u>Technical specifications</u>

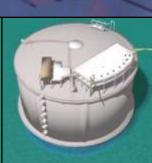
Capacity: 5,000 tpd, 1.75 Mtpa DPT/JM SMR process Can convert high CO₂ gas (20%-35%) CGS dimensions: ~200,000 t

- Base: 170m x 93m x 35m
- At top:180m x 100m (wave deflection) Installed in 14m water depth

Methanol CGS – proven technology


ExxonMobil Adriatic LNG re-gas terminal

Similar footprint to TSMP, but 50% taller than TSMP due to increased water depth



LNG plant – proven technology

Technical specifications

- 3 Mtpa
 - Indirect seawater cooling
 - Air Products Dual Mixed
 Refrigerant (DMR) Process
- Ace platform (ARUP Energy)
 - 100x50x8m
 - 14m water depth
- Topsides 15,000 t
- Single 170,000 m³ storage tank
 - Conventional nickel steel
 - Concrete gravity base
 - Pre-Fabricated in SE Asia

Tassie Shoal LNG – an attractive alternative

Estimated costs * (US\$M)	Land-based LNG	Tassie Shoal LNG	Potential Savings
Plant Costs	1,549	1,090	459
Pipeline	943	288	655
LNG Tank	300	330	(30)
Loadout/Jetty	200	277	(77)
Project/Owners Costs (8.5%)	<u>188</u>	<u>106</u>	<u>82</u>
Total Project Cost	3,180	2,091	1,089

- Capex savings result from:
 - Dramatically reduced pipeline distances
 - Substantially reduced plant footprint (sea water cooled)
 - Pre-fabricated / pre-commissioned in SE Asia
- Higher operating costs offset by shorter transport distance to market
- Tassie Shoal Hub offers CO₂ sequestration and operational synergies

^{*} Independent cost estimates 3Q 2008

- MEO Australia Limited

Tassie Shoal – Hub & GTL Projects

- an economic 'game changer'

- Attractive solution for CO₂ challenged gas
- Defined path to start-up of value-added gas projects
 - Sound alliances with leading technology suppliers
- No significant technical challenges
- Reliable market with demand and price upside
- Projects require confirmed gas source
 - 3rd party supply integration & / or
 - MEO equity gas from Blackwood & / or Heron gas discoveries (subject to confirmation by appraisal drilling)

