

Disclaimer

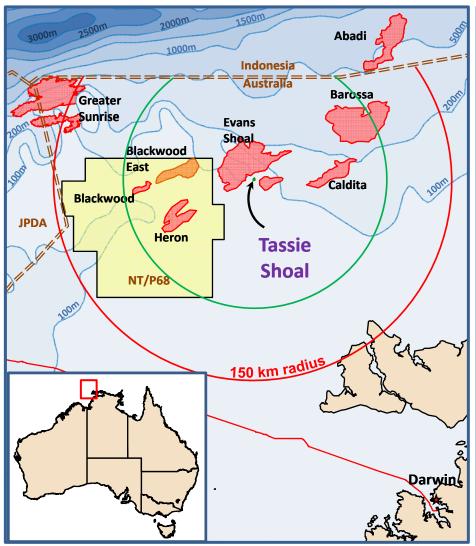
This presentation includes certain forward-looking statements that have been based on current expectations about future acts, events and circumstances. These forward-looking statements are, however, subject to risks, uncertainties and assumptions that could cause those acts, events and circumstances to differ materially from the expectations described in such forward-looking statements.

These factors include, among other things, commercial and other risks associated with estimation of potential hydrocarbon resources, the meeting of objectives and other investment considerations, as well as other matters not yet known to the Company or not currently considered material by the Company.

MEO Australia accepts no responsibility to update any person regarding any error or omission or change in the information in this presentation or any other information made available to a person or any obligation to furnish the person with further information.

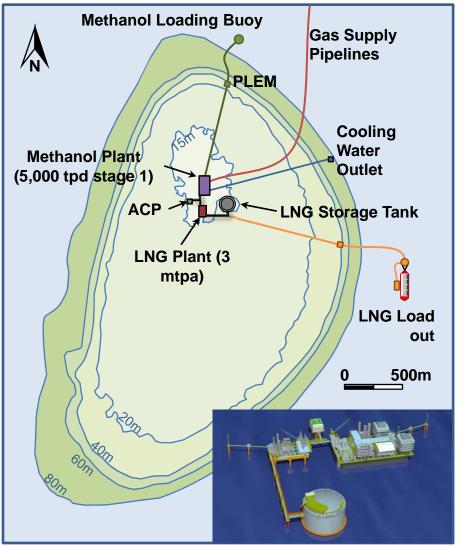
The case for a Tassie Shoal infrastructure hub SEAAOC

Darwin, 10-11th September 2009


Outline context - "Use it or lose it"

Challenging prevailing paradigms

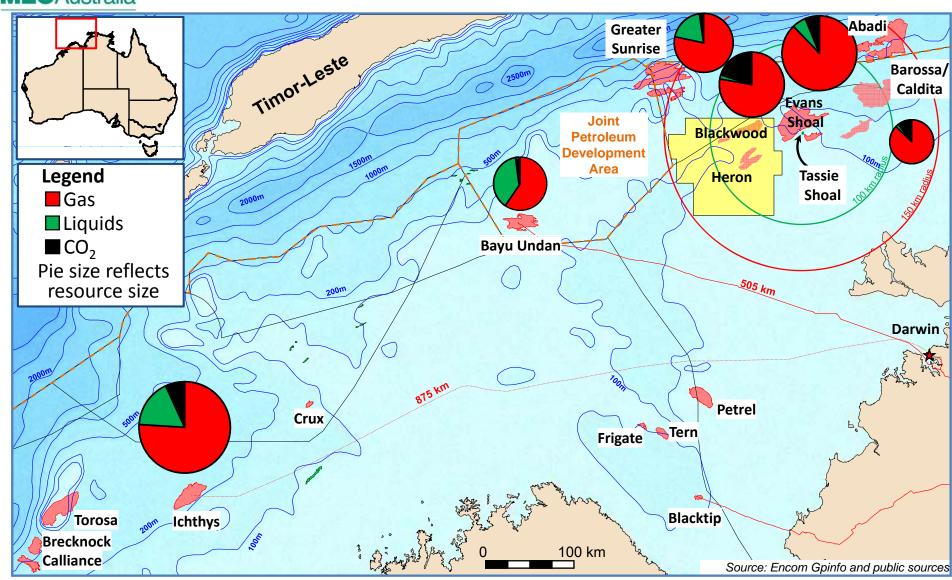
- Tassie Shoal a natural gas processing development hub site
- A regional perspective
- Economics 101 ("gas ain't gas")
- Quantifying pipeline cost savings
- Alchemy converting CO₂ into a revenue stream
- Timor Sea Gas Processing Projects with environmental approvals in place
- Modular construction yields substantial capital cost savings
- An economically viable alternative for CO₂ and location challenged gas


Tassie Shoal – a natural development hub

Central to all undeveloped Timor Sea gas fields

MEOAustralia

energy for the future



Remote NW Australian gas discoveries

Gas quality and distance from intrastructure impact economics

MEOAustralia

Economic ranking

Value is driven by natural gas liquids yields & oil price

		Distance			Liquids		
	%CO ₂ in		Darwin	Liquids	Value		
Field	Tcf gas	gas	MtCO ₂	(km)	(mmbbls)	(A	\$bn)
Ichthys	12.8	9	60.7	875	527	\$	40.3
Bayu-Undan	3.4	4	7.2	500	400	\$	30.6
Greater Sunrise	5.4	4	11.4	450	242	\$	18.5
Abadi	10	7	36.9	410	126	\$	9.6
Barossa/Caldita	3.4	12	21.5	330	17	\$	1.3
Evans Shoal	6.6	25	86.9	328	31	\$	2.4

<u>Assumptions</u>			
CO ₂ density	Mt/Tcf		52.7
Oil price	US\$/bbl	\$	65
Forex	US\$/A\$	\$ (0.85
Carbon permits	A\$/t	\$	30
Pipeline Cost	US\$m/km	\$	2

Economic ranking

Natural gas liquids help overcome CO₂ and distance

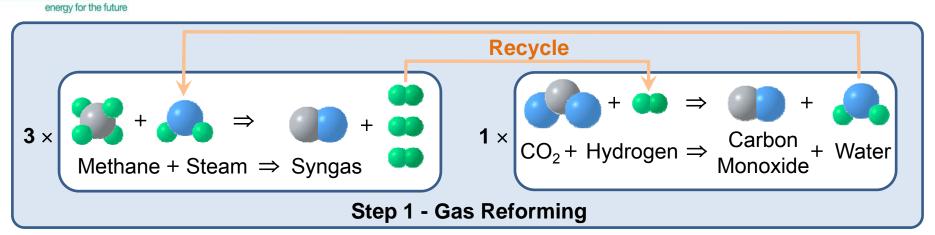
				Distance		Lic	quids	Carbon	Pipeline	Surplus
		%CO ₂ ii	n	Darwin	Liquids	V	alue	cost	cost	value
Field	Tcf gas	gas	MtCO ₂	(km)	(mmbbls)	(A	\$bn)	(A\$bn)	(A\$bn)	(A\$bn)
Ichthys	12.8	9	60.7	875	527	\$	40.3	-\$1.8	-\$2.1	\$36.4
Bayu-Undan	3.4	4	7.2	500	400	\$	30.6	-\$0.2	-\$1.2	\$29.2
Greater Sunrise	5.4	4	11.4	450	242	\$	18.5	-\$0.3	-\$1.1	\$17.1
Abadi	10	7	36.9	410	126	\$	9.6	-\$1.1	- <u>\$1.0</u>	\$7.6
Barossa/Caldita	3.4	12	21.5	330	17	\$	1.3	-\$0.6	-\$0.8	-\$0.1
Evans Shoal	6.6	25	86.9	328	31	\$	2.4	-\$2.6	-\$0.8	-\$1.0

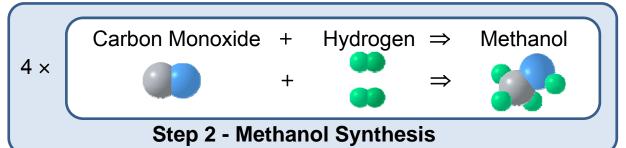
<u>Assumptions</u>			
CO ₂ density	Mt/Tcf		52.7
Oil price	US\$/bbl	\$	65
Forex	US\$/A\$	\$ (0.85
Carbon permits	A\$/t	\$	30
Pipeline Cost	US\$m/km	\$	2

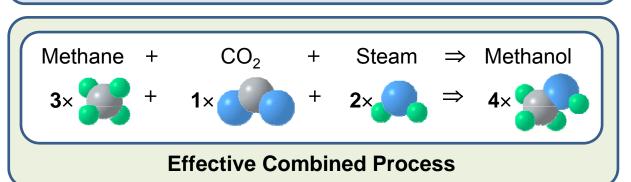
Proximity to Tassie Shoal saves pipeline costs

But what about CO₂?

MEOAustralia

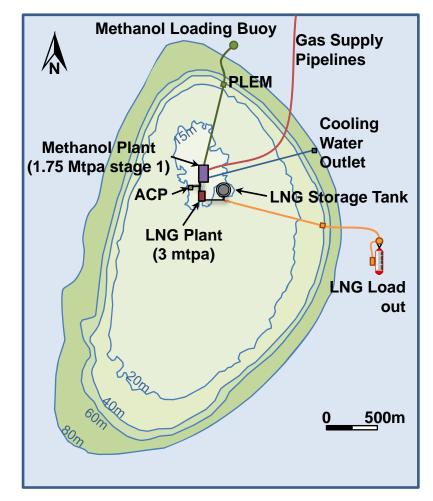

energy for the future


	Distance to	Surplus Liquids	Tassie Shoal	Tassie Shoal
Field	Darwin (km)	value (A\$bn)	saving (km)	saving (A\$m)
Ichthys	875	\$36.4	Similar	distance
Bayu-Undan	500	\$29.2	Already o	developed
Greater Sunrise	450	\$17.1	300	\$706
Abadi	410	\$7.6	268	\$631
Barossa/Caldita	330	-\$0.1	257	\$604
Evans Shoal	328	-\$1.0	318	\$748


Co MEOAustralia

Alchemy

Converting A\$30/t carbon cost into a >US\$200/t revenue stream



Legend

C MEOAustralia energy for the future

Environmental approvals in place

CO₂ sequestered into an export product selling for >US\$200/t

Tassie Shoal

- Mild met-ocean conditions
- ~25 Tcf of undeveloped gas within 150km
- Eliminates long pipelines to shore

Environmental approvals secured

- 1 x 3 mtpa (expandable to 3.5 mtpa) LNG plant
- 2 x 5,000 tpd (1.75 mtpa) Methanol plants
- MPF status granted until Dec 2011

Te MEOAustralia energy for the future

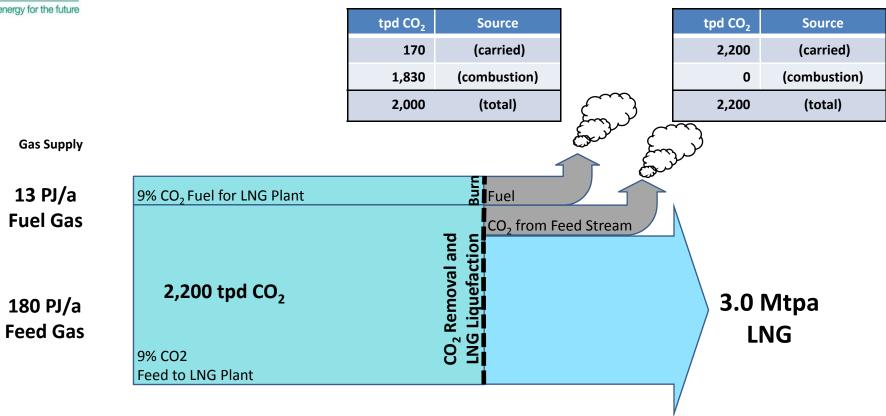
Technology developed with leading partners

Proven, 'off-the-shelf' solutions

Financial Advisor: SMBC Technology: Davy ProTech

Product offtake: Mitsubishi, Vitol

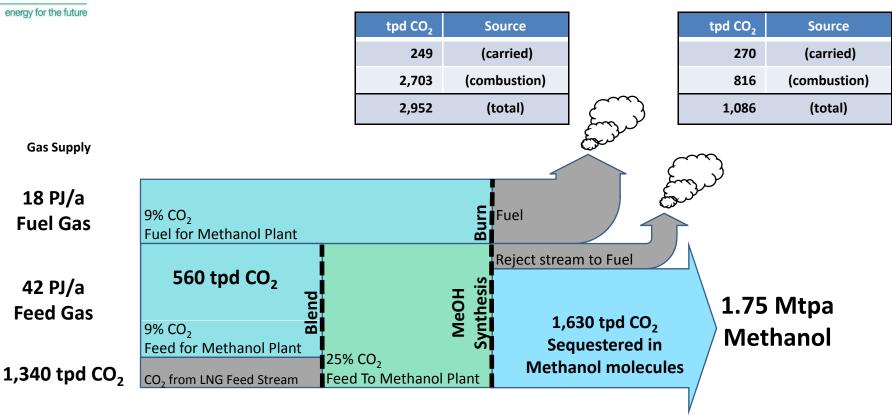
Substructure: Arup


Project Execution: WorleyParsons, Fluor, Leighton

Environment: CEE Oceanography:
Metocean Engineers

CO₂ released from LNG

Carbon dioxide balance



- CO₂ intensity of LNG Plant = 0.5 tCO₂/tLNG
- With Geo-sequestration can be reduced to 0.35 tCO₂/tLNG (Source: Gorgon EIS)

CO₂ sequestration into methanol

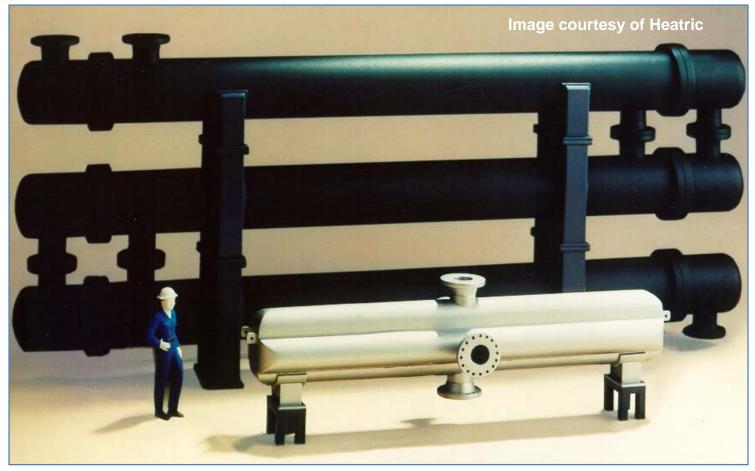
Achieves lower CO₂ intensity than geosequestration

- Gorgon LNG based on 9% CO₂ gas with Geo-sequestration = 0.35 tCO₂/tLNG
- Single Methanol Plant = 0.33 tCO₂/tLNG
- Two Methanol Plants = **0.21 tCO₂/tLNG** (minimum technically possible with 0% CO₂ fuel gas)
- Chinese coal based methanol production is swing producer and emits >1.7 times CO₂
 per tonne of methanol compared with MEO proposed process

LNG project elements

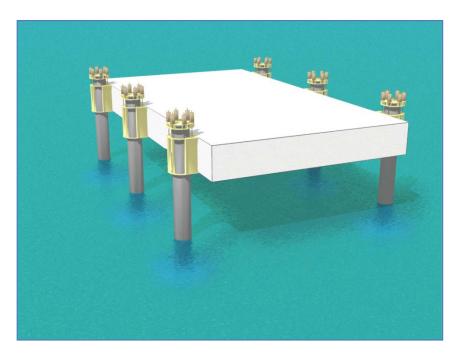
Proven, 'off-the-shelf' solutions

• 3 Mt/y LNG production module


- Standard pre-treat section: CO₂, H₂O & Hg removal
- Air Products (APCI) DMR chilling and liquefaction
- Fractionation plant for refrigerant makeup
- Utilities: power gen, steam, water cooling systems
- Production ACE self-installing barge platform
 - 100m x 50m, on six caisson legs
- LNG Storage 170,000m³ conventional tank on CGS
- LNG Load out Jetty or Hi-Load semi-sub
- Separate structures for ACP and possibly flare

Compact heat exchangers

Indirect sea-water cooling


Extensive use of compact printed circuit heat exchangers (PCHEs)

- up to 1/25th plot area of air coolers

LNG Substructure

Production ACE platform for LNG process equipment

Floating LNG technology – on solid ground

Timor Sea LNG Project is a single module

A NWS Train 5 (4.4 Mtpa) module

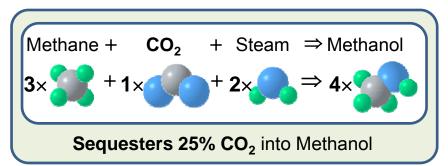
Pluto I (4.3 Mtpa) has 264 modules

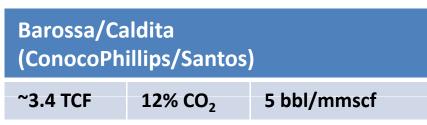
Darwin LNG Plant (3.7 Mtpa)

Timor Sea LNG Plant (3.0 Mtpa) at same scale – 1 module

- Technology developed for FLNG, installed on fixed, self installing platform
- Small footprint due to compact FLNG design and indirect sea-water cooling
- Proximity to gas fields reduces pipeline distances

Consider the Tassie Shoal advantages


Viable alternative for CO₂ and location challenged gas

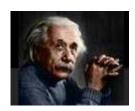

CO₂ challenged

Evans Shoal (Santos, Shell, Petronas, Osaka Gas)

~6+TCF 25% CO₂ 4 bbl/mmscf

Conventional solution is **geo-sequestration**Tassie Shoal offers **methanol sequestration**Consider the economics of the alternatives

Location challenged


Concluding remarks

Inspired by a great thinker - Albert Einstein₍₁₈₇₉₋₁₉₅₅₎

"No problem can be solved from the same level of consciousness that created it"

"If the facts don't fit the theory, change the facts"

"Insanity: doing the same thing over and over again and expecting a different result"

